
A M E T H O D  OF D E T E R M I N I N G  D I F F U S I O N  

C O E F F I C I E N T S  A N D  F R I C T I O N A L  D R A G  

F A C T O R S  IN L I Q U I D S  

A.  V. L u i k o v  a n d  Z.  P .  S h u l ' m a n  UDC 532.72:532.6 

We propose a method of modeling the hydrodynamic friction of plates and the molecular  
diffusion of an impuri ty  in a liquid medium by means of the phenomena of convection mass  
t ranspor t .  

Considerable in teres t  has recent ly  been expressed  in the problem of the res is tance and heat and mass  
t r ans fe r  of liquid media in drop form, pr imar i ly ,  in non-Newtonian solutions, melts,  suspensions,  emul-  
sions, etc. 

Within the framework of the theory of incompressible continuous media, the mathematical descrip- 
tions of isothermal motions of incompressible gases and liquids are identical. Consequently, we ignore 
the specific differences in the mechanical behavior of gases and liquids. In particular, it is well known that 
the aeromechanical measurements of velocity and pressure are considerably better and more reliable than, 
for example, the hydromechanical methods. Experiments with non-Newtonian fluids are particularly diffi- 
cult. Experimental data on the resistance of such fluids are very hard to find. 

Analysis of literature data shows that the information obtained with various pneumometric nozzles, 
with static pressure probes at the surface being streamlined, with heated thermoanemometric sensors, etc., 
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Fig. I. Comparison of calculations (se l f -s imi lar  exact  solu- 
t ions: solid curves) with the approximate values (dots) of the 
e lec t rochemoluminescence  experiments:  a) aqueous solution of 
carboxymethylcel lulose (n = 0.88; c = 1%); 1) U~ = 0.21 cm 
/ s e c ;  2) 50 c m / s e c ,  b) Newtonian solution without polymer addi- 
tions (n = 1.0). 
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Values of the diffusion coefficients for 
1-1202 ions in Newtonian electrolysis on the basis 
of measurements of the local j-flows at various 
points on a longitudinally streamlined plate: i) 
0.17 m/sec;  2) 0.21 m/see;  3) 0.35 m/sec;  4) 
0.45 m/sec;  5) 0.5 m/sec .  

is quite limited and unreliable for liquid media. Thus, 
for example, it is demonstrated in the work by Baren-  
blatt and his students [1J that such pneumometr ic  noz- 
zles as Pitot tubes in polymer  solutions reveal  a mark-  
edly nonlinear time dependence on flow velocity and on 
the d iameter  of the inlet orifice.  

Most of the hydrodynamic and heat-  and mass -  
t r ans fe r  experimental  r e sea rch  on liquid media is cur -  
rently reduced to measur ing the integral balances of 
e i ther  the entire s t reamlined surface,  or  of individual 
portions of that surface.  At the same time, of greates t  
interest  are  the local charac te r i s t i cs  (friction, heat 
and mass  flows) of t r ans fe r  and the most  important  
details of the hydrodynamic situation (separation of the 
boundary layer ,  t ransi t ion from laminar  to turbulent 
reg imes ,  the wake region, the wake itself, vortex 
formations,  cavities,  etc.). 

1. The Reynolds analogy methods to find the local fr ict ion or physical modeling for viscous liquid media are 
not very  effective, since the Prandtl numbers (heat- and mass - t r ans f e r )  are,  f irst  of all, usually very  
much grea ter  than unity, and secondly, as a rule, they differ markedly  in t e rms  of magnitude. Thus, for 
example, for aqueous solutions of the sodium salt of carboxymethylcel lulose Pr  t = r e f f / a  is of the o rder  
of 10 2, whereas the o rde r  of Pr  m = Veff/D is approximately 10 4. Thus, even for the case of laminar  
s t reaml in ing  of a plate, there is no s imi lar i ty  between the dimensionless  velocity, tempera ture ,  and con- 
centrat ion fields. 

Never theless ,  it remains  possible to establish a balance between the diffusion flows and the frictional 
drag in the boundary layer.  For  this it is sufficient to have some completely reliable solution (exact or  
approximate) of the diffusion problem, in conjunction with the measurements  of the j-flows from the ex- 
per iment  on convection mass  t ransfer .  The solution of the l inear (or quasi- l inear)  problem of the diffusion 
boundary layer  is much s impler  than the integration of the nonlinear equations of the dynamic boundary 
layer.  On the other hand, [2, 3] discuss  a new and quite simple method of measur ing  j-flows for bodies 
of a rb i t r a ry  configuration by means of an e lec t rochemoluminescence  procedure.  Measurements  of this 
kind combine the c lar i ty  of visualization with reliable quantitative es t imates ;  they are distinguished by s i m -  
plicity, high accuracy,  and good reproducibil i ty.  On the basis of this seemingly ra ther  limited information 
about local j-f lows, it is nevertheless  possible to derive an acceptable approximate relat ionship for f r i c -  
tional d rag  in liquids with any viscosi ty  law. 

As an example, let us consider  the problem of a flat plate longitudinally s t reamlined by a non-New- 
tonian fluid of the "power" type. The convection diffusion calculated in [2] yields the following for the local 
values of the diffusion Nusselt  number:  
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The form pa rame te r  fil = f"(0) of the dynamic field is proport ional  to the velocity gradient at the wall. It 
can be expressed  [4] in t e rms  of the frictional drag factor  
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Simul taneous  solut ion of Eqs.  (1) and (3) y ie lds  the unknown re l a t ionsh ip  

N u  n 
m x  

Pe~  R% (4) 

o r  

Final ly ,  

Then 
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we can use the m a s s - t r a n s f e r  Stanton n u m b e r  

(5) 

Nu..~ ] (x) (6) St,n = ~  = _ _  
Pe.~ coU| 
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F igu re  1 shows the r e s u l t s  f r o m  ca lcu la t ions  on the bas i s  of f o r m u l a s  (4)-(6) on the bas is  of e x p e r i -  
men ta l  data taken f r o m  [2] for  n = 1 and 0.83. A g r e e m e n t  between the app rox ima te  and exac t  ca lcu la t ion  is 
quite s a t i s f a c t o r y .  The s l ight  d ive rgence  can be a s c r i b e d  to the e l eva ted  level  of pe r tu rba t ions  in the flow 
impinging  on the plate ,  s ince  in these  e x p e r i m e n t s  the plate  was  swept  by i ts  own weight,  which had not ye t  
se t t l ed  down comple te ly .  

2. F o r  l iquids exhibi t ing no m a r k e d  concen t r a t i on  re l a t ionsh ip  for  the coef f ic ien t  D of t r ans l a t iona l  
diffusion,  the use of the e l e c t r o c h e m o l u m i n e s c e n c e  method is p a r t i c u l a r l y  effect ive .  The m o s t  popu la r  
methods  of d e t e r m i n i n g  D a r e  based  on opt ica l  p r o c e d u r e s  ( in te r fe rence ,  po la r i za t ion ,  r e f r ac t ion ,  etc.)  
which r equ i r e  expens ive  equ ipment  which is highly spec ia l i zed  and ha rd  to obtain,  s ince  it is both complex  
and not in r e g u l a r  product ion .  The D m e a s u r e m e n t s  by the e l e e t r o c h e m o l u m i n e s c e n c e  method should bes t  
be based  on the data f r o m  e x p e r i m e n t s  with a longi tudinal ly  s t r e a m l i n e d  plate.  Then,  fo r  fixed values  of c o , 
k, n, p, and Uoo, f r o m  (1), we obtain 

1 8 ( n + l )  n ( n + l ) k / p  ~+~x ~+~ 
D = 2n + 1 . U~ - n  [liU" . (8) 

in the case  of a Newtonian s y s t e m  (n = 1) Eq.  (8) is t r a n s f o r m e d  [5] to the f a m i l i a r  Levich  F o r  example ,  
fo rmula  

] (x)--~__ 0.34 ] /_~_ . (9) 

F o r  any two a b s c i s s a  values  of x ( inc reas ing  d i s tance  f r o m  the leading  edge of the plate) we have 

z, V ~  (10) 
Dr = D j  l i v e /  " 

Here  I is the loca l  value of the p h o t o c u r r e n t  at  the output of the photomul t ip l ie r .  Thus it is poss ib le  to 
ach ieve  the n e c e s s a r y  n u m b e r  of s teps  f r o m  a b r i e f  e x p e r i m e n t  to e n s u r e  re l i ab i l i ty  and suff ic ient  a c c u r a c y  
in the de t e rmina t i on  of the quant i ty  D. The r e f e r e n c e  value of Dj is ca lcu la ted  f r o m  (8). The convenience  
of (10) r e s t s  in the fact  tha t  it, unlike (9), conta ins  only two d i r e c t l y  m e a s u r a b l e  c h a r a c t e r i s t i c s  - the ab-  
s c i s s a  value of x and the p h o t o c u r r e n t  T. F igu re  2 shows a r a t h e r  c l e a r  r e p r e s e n t a t i o n  of the c o r r e l a t i o n  
between the va lues  of D obtained by the e l e c t r o c h e m o l u m i n e s c e n c e  method and by the L a m m  r e f r a c t o m e t r i c  
method  [6] fo r  an H20-H202  s y s t e m  (impuri ty) .  

The d e t e r m i n a t i o n  of D could not n e c e s s a r i l y  be a s s o c i a t e d  with the in fo rmat ion  p rov ided  by the opt ica l  
channel ,  i . e . ,  with the m e a s u r e m e n t  of the in tens i ty  of the e l e c t r o c h e m o l u m i n e s c e n c e .  The method can be 
s impl i f i ed  subs tan t ia l ly ,  r e t a in ing  only the e l e c t r o c h e m i c a l  channel ,  us ing a m i c r o a m m e t e r  to r e c o r d  the 
c u r r e n t  in the outs ide  c i r cu i t  of the cell .  In this  case  the i n s t r u m e n t  will  show the in tegra l  magni tude  of the 
c u r r e n t  I c o v e r  the en t i r e  anode su r f a c e  and the fo rmula  for  the ca lcu la t ion  of D will  a s s u m e  the f o r m  [5] 
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To come up with the required number of independent measurements ,  we can vary  the velocity of the 
flow impinging on the anode, in which case (n = 1) 

D ~ = D i  ]i "/Uj 
b VST~ " (12) 

This method is no less effective in determining the concentration function D(c). Many problems of nonlinear 
diffusion are present ly  being solved successful ly  [7, 8] for various types of D(c) functions. If the nature of 
the functional relationship D(c) is a pr ior i  unknown, the derivation of the required formula for the diffusion 
flow at the wall is achieved by means of a power expansion of D(c). 
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N O T A T I O N  

are,  respect ively,  the coefficients of kinematic viscosity,  thermal  diffusivity, and 
diffusion; 
is the local diffusion flow; 
are  the pa ramete r s  of the exponential rheological equation; 
is the flow velocity at the outside edge of the boundary layer;  
is the concentrat ion of the active electrolyte  in the volume phase; 
are  the longitudinal and t r ansver se  coordinates of the boundary layer;  
is the length of the passive preconnected section of the plate; 
is the overal l  plate length; 
is the plate width; 
is the frict ional res is tance  of the local p la te -sur face  element; 
is a dimensionless  s t r eam function (a s e l f - s imi l a r  variable); 
is the m a s s - t r a n s f e r  Peclet  pa ramete r ;  

is the general ized Reynolds number.  
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